Publications

155) M. I. Youssif, K. V. Sharma, A. E. Shoukry, L. Goual, and M. Piri, Methane foam performance evaluation in fractured oil-wet carbonate systems at elevated pressure and temperature conditions, Journal of Environmental Chemical Engineering, 12(3), 112444, https://doi.org/10.1016/j.jece.2024.112444 (2024).


154) M. I. Youssif, K. V. Sharma, L. Goual, and M. Piri, Experimental evaluation of foam-assisted gas injection in proppant-packed fractured oil-wet carbonate, Energy & Fuels, 38(4), 3032-3056, https://doi.org/10.1021/acs.energyfuels.3c04322 (2024).


153) O. Elkhatib, M. I. Youssif, M. Piri, and L. Goual, Mechanistic Investigation of wettability alteration by bulk and interfacial asphaltenes using a surface force apparatus, Energy & Fuels, 38(1), 171-183, https://doi.org/10.1021/acs.energyfuels.3c04029 (2024).


152) R. M. Alloush, K. V. Sharma, and M. Piri, The effect of confinement on the phase behavior of propane in nanoporous media: An experimental study probing capillary condensation, evaporation, and hysteresis at varying pore sizes and temperatures, Physical Chemistry Chemical Physics, 26(7), 5978-5985,  https://doi.org/10.1039/D3CP04378A (2024).


151) A. E. Shoukry, S. Saraji, and M. Piri, Pore-scale experimental investigation of capillary desaturation in fractured porous media, Journal of Hydrology, 631, 130748, https://doi.org/10.1016/j.jhydrol.2024.130748 (2024).


150) S. L. Van, K. V. Sharma, and M. Piri, The effects of wettability and permeability on hydrocarbon foam performance in unconsolidated porous media: An experimental investigation at elevated pressure and temperature conditions, Fuel, 359, 130379, https://doi.org/10.1016/j.fuel.2023.130379 (2024).


149) A. E. Shoukry, S. Saraji, and M. Piri, Two-phase displacement dynamics in fractured porous media of varying wettability states: A micromodel experimental investigation of matrix/fracture interactions, Advances in Water Resources, 176, 104447, https://doi.org/10.1016/j.advwatres.2023.104447 (2023).


148) A. K. Aboahmed, M. I. Youssif, M. Piri, and L. Goual, Nanofluid-based foam for enhanced oil recovery in fractured carbonates, Energy & Fuels37(23), 18772-18784, https://doi.org/10.1021/acs.energyfuels.3c02816 (2023).


147) A. K. Aboahmed, M. I. Youssif, M. Piri, and L. Goual, Graphene quantum dot-stabilized foam for enhanced oil recovery, Industrial & Engineering Chemistry Research, 62(33), 13260-13273, https://doi.org/10.1021/acs.iecr.3c01747 (2023).


146) U. Igwe, M. Khishvand, and M. Piri, The effects of initial water saturation on retrograde condensation in natural porous media: An in Situ experimental investigation of three-phase displacements, Physics of Fluids, 35, 103110, https://doi.org/10.1063/5.0169550 (2023).


145) B. Zhang, K. Rane, M. Piri, and L. Goual, Impact of surface roughness, surface charge, and temperature on sandstone wettability alteration by nanoparticles, Petroleum Science, 20(5), 2852-2863, https://doi.org/10.1016/j.petsci.2023.04.004 (2023).


144) A. S. Hanamertani, S. Saraji, and M. Piri, A comparative investigation of the effect of gas type on foam strength and flow behavior in tight carbonates, Chemical Engineering Science, 276, 118798, https://doi.org/10.1016/j.ces.2023.118798 (2023).


143) J. Tetteh, J. Kubelka, and M. Piri, Effect of oil carboxylate hydrophobicity on calcite wettability and its reversal by cationic surfactants: An experimental and molecular dynamics simulation investigation, Journal of Molecular Liquids, 380, 121663, https://doi.org/10.1016/j.molliq.2023.121663 (2023).


142) H. Qu, M. Khishvand, and M. Piri, Synergistic effects of aqueous phase viscoelasticity and reduced interfacial tension on non-wetting phase displacement efficiency: An in situ experimental investigation, Langmuir, 39(11), 3837-3852, https://doi.org/10.1021/acs.langmuir.2c01765 (2023).

141) A. I. A. Mohamed, M. Khishvand, and M. Piri, Entrapment and Mobilization Dynamics during the Flow of Viscoelastic Fluids in Natural Porous Media: A

Micro-Scale Experimental Investigation, Physics of Fluids, 35, 047119, https://doi.org/10.1063/5.0139401 (2023).


140) K. V. Sharma, R. M. Alloush, and M. Piri, Confined phase behavior of ethane in nanoporous media: An experimental investigation probing the effects of pore size and temperature, Microporous and Mesoporous Materials351(1), 112459 https://doi.org/10.1016/j.micromeso.2023.112459 (2023).


139) V. S. Le, K. V. Sharma, A.S. Hanamertani, M. I. Youssif, O. Elkhatib, K. Rane, M. Piri, A. Katiyar, and N. Nagarajan, Methane foam performance in oil-wet unconsolidated porous media: A systematic experimental investigation at reservoir conditions, Fuel, 344, 128002 https://doi.org/10.1016/j.fuel.2023.128002 (2023).


138) O. Elkhatib, Y. Xie, A. Mohamed, M. Arshadi, M. Piri, and L. Goual, Pore-scale study of wettability alteration and fluid flow in propped fractures of ultra-tight carbonates, Langmuir, 39(5), 1870-1884, https://doi.org/10.1021/acs.langmuir.2c02900 (2023).


137) R. Wang, M. Arshadi, and M. Piri, Micro-scale experimental investigation of the effect of pore space deformation on trapping of supercritical CO2, Advances in Water Resources173, 104387, https://doi.org/10.1016/j.advwatres.2023.104387 (2023).


136) M. Akbarabadi, A. H. Alizadeh, M. Piri,  and N. Nagarajan, Experimental evaluation of enhanced oil recovery in unconventional reservoirs using cyclic hydrocarbon gas injection, Fuel, 331(1), 125676, https://doi.org/10.1016/j.fuel.2022.125676 (2023).


135) A. I. A. Mohamed, M. Khishvand, and M. Piri, The role of injection fluid elasticity in microscopic displacement efficiency of residual non-wetting phase: An in-situ experimental investigation,  Fuel, 333(1), 126180, https://doi.org/10.1016/j.fuel.2022.126180 (2022).

134) R. Toutouni, J. Kubelka, and M. Piri, Quantitative predictions and experimental validation of liquid-vapor interfacial tension in binary and ternary mixtures of alkanes using molecular dynamics simulations, Journal of Physical Chemistry B, 127(1), 396-406, https://doi.org/10.1021/acs.jpcb.2c07748 (2022).


133) A. Zankoor, M. Khishvand, and M. Piri, In-situ capillary pressure and its interrelationships with flow characteristics during steady-state three-phase flow in water-wet Berea Sandstone, Water Resources Research, 58(12), e2022WR032976, https://doi.org/10.1029/2022WR032976 (2022).


132) A. Shawaf, D. Akindipe, A. Zankoor, M. Arshadi, and M. Piri, In situ wettability, capillary pressure, and matrix-fracture interactions in fractured oil-wet

carbonate: A microscale investigation, Energy & Fuel, 37(1), 159-174, https://doi.org/10.1021/acs.energyfuels.2c02187 (2022).


131) V. S. Le, M. I. Youssif, A.S. Hanamertani, K. V. Sharma, O. Elkhatib, K. Rane, Y. Xie, A. Das, M. Piri, A. Katiyar, and N. Nagarajan, Methane foam performance evaluation in water-wet unconsolidated porous media: A systematic experimental investigation at elevated pressure and temperature conditions, Journal of Natural Gas Science and Engineering108, 104835, https://doi.org/10.1016/j.jngse.2022.104835 (2022).


130) D. A. Akindipe, S. Saraji, and M. Piri, Pore matrix dissolution in carbonates: An in-situ experimental investigation of carbonated water injection, Applied Geochemistry, 147, 105483, https://doi.org/10.1016/j.apgeochem.2022.105483 (2022).


129) D. A. Akindipe, S. Saraji, and M. Piri, Salt precipitation in carbonates during supercritical CO2 injection: A pore-scale experimental investigation of the effects of wettability and heterogeneity, International Journal of Greenhouse Gas Control, 121, 103790, https://doi.org/10.1016/j.ijggc.2022.103790 (2022).


128) K. Rane, B. Zhang, V. S. Le, K. V. Sharma, M. Piri, and L. Goual, Impact of graphene quantum dots on gas foam stability, Industrial & Engineering Chemistry Research, 61(43), 16278-16290, https://doi.org/10.1021/acs.iecr.2c01856 (2022).


127) R. Wang, M. Arshadi, A. Zankoor, and M. Piri, Pore space deformation and its implications for two-phase flow through porous media: A micro-scale experimental investigation, Water Resources Research, 58(10), e2022WR032157, https://doi.org/10.1029/2022WR032157 (2022).


126) R. M. Alloush, K. V. Sharma, and M. Piri, Capillary condensation and evaporation of n-Butane and iso-Butane in nanoporous media: Experimental study of the effects of pore size and temperature using automated gravimetric apparatus, Journal of Molecular Liquids, 364, 119894, https://doi.org/10.1016/j.molliq.2022.119894 (2022).


125) S. Bai and M. Piri, Hydrogen storage in nanoporous media: Molecular dynamics simulations of the confinement effects, International Journal of Hydrogen Energy, 47(59), 24886-24896, https://doi.org/10.1016/j.ijhydene.2022.05.245 (2022).


124) D. A. Akindipe, S. Saraji, and M. Piri, Carbonated water injection in oil-wet carbonate rock samples: A pore-scale experimental investigation of the effect of brine composition, Energy & Fuels, 36(9), 4847-4870, https://doi.org/10.1021/acs.energyfuels.2c00326 (2022).


123) R. Toutouni, J. Kubelka, and M. Piri, Liquid-vapor interfacial tension in alkane mixtures: Improving predictive capabilities of molecular dynamics simulations, Journal of Physical Chemistry B, 126(5),1136-1146, https://doi.org/10.1021/acs.jpcb.1c09122 (2022).


122) J. Tetteh, S. Bai, J. Kubelka, and M. Piri, Wettability reversal on oil-wet calcite surfaces: Experimental and computational investigations of the effect of the hydrophobic chain length of cationic surfactants, Journal of Colloid, and Interface Science, 619, 168-178, https://doi.org/10.1016/j.jcis.2022.03.114 (2022).


121) U. Igwe, M. Khishvand, and M. Piri, Retrograde condensation in natural porous media: An in situ experimental investigation, Physics of Fluids, 34, 013102, 2022, https://doi.org/10.1063/5.0073801 (2022).


120) J. Tetteh, S. Bai, J. Kubelka, and M. Piri, Surfactant-induced wettability reversal on oil-wet calcite surfaces: Experimentation and molecular dynamics simulations with scaled-charges, Journal of Colloid, and Interface Science, 609, 890-900, https://doi.org/10.1016/j.jcis.2021.11.080 (2022).


119) Y. Gong, M. Sedghi, and M. Piri, Two-phase relative permeability of rough walled fractures: A dynamic pore-scale modeling of the effects of aperture geometry, Water Resources Research, 57(12), e2021WR030104, https://doi.org/10.1029/2021WR030104 (2021).


118) Z. Qin, M. Arshadi, and M. Piri, Near-miscible supercritical CO2 injection in oil-wet carbonate: A pore-scale experimental investigation of wettability state and three-phase flow behavior, Advances in Water Resources, 158, 104057, https://doi.org/10.1016/j.advwatres.2021.104057 (2021).


117) B. Zhang, L. Jiang, K. Rane, L. Goual, and M. Piri, Low-temperature graphene growth and shrinkage dynamics from petroleum asphaltene on CuO nanoparticle, Industrial & Engineering Chemistry Research, 60(32), 12001-12010, https://doi.org/10.1021/acs.iecr.1c01658 (2021).


116) A. S. Hanamertani, S. Saraji, and M. Piri, The effects of in-situ emulsion formation and superficial velocity on foam performance in high-permeability porous media, Fuel, 306, 121575, https://doi.org/10.1016/j.fuel.2021.121575 (2021).


115) D. A. Akindipe, S. Saraji, and M. Piri, Salt precipitation during geological sequestration of supercritical CO2 in saline aquifers: A pore-scale experimental investigation, Advances in Water Resources, 155, 104011, https://doi.org/10.1016/j.advwatres.2021.104011 (2021).


114) A. Zankoor, M. Khishvand, A. I. A. Mohamed, R. Wang, and M. Piri, In-situ capillary pressure and wettability in natural porous media: Multi-scale experimentation and automated characterization using x-ray images, Journal of Colloid, and Interface Science, 603, 356-369, https://doi.org/10.1016/j.jcis.2021.06.052 (2021).


113) R. Toutouni, J. Kubelka, and M. Piri, Molecular dynamics simulations of the vapor-liquid equilibria in CO2/n-Pentane, Propane/n-Pentane and Propane/n-Hexane binary mixtures, Journal of Physical Chemistry, 125(24), 6658-6669, https://doi.org/10.1021/acs.jpcb.1c03673 (2021).


112) R. Toutouni, J. Kubelka, and M. Piri, Correction to molecular dynamic simulations of the vapor-liquid equilibria in CO2/n-Pentane, Propane/n-Pentane, and Propane/n-Hexane, Journal of Physical Chemistry125(37), 10647-10648, https://doi.org/10.1021/acs.jpcb.1c07646 (2021).


111) S. Bai, J. Kubelka, and M. Piri, Wettability reversal on dolomite surfaces by divalent ions and surfactants: An experimental and molecular dynamics simulation study, Langmuir, 37(22), 6641-6649, https://doi.org/10.1021/acs.langmuir.1c00415 (2021).


110) G. K. Ekechukwu, M. Khishvand, W. Kuang, M. Piri, and S. Masalmeh, The effect of wettability on waterflood oil recovery in carbonate rock samples: A systematic multi-scale experimental investigation, Transport in Porous Media, 138, 369-400, https://doi.org/10.1007/s11242-021-01612-3 (2021).


109) Y. Gong, M. Sedghi, and M. Piri, Dynamic pore-scale modeling of residual trapping following imbibition in a rough-walled fracture, Transport in Porous Media, 140, 143-179, https://doi.org/10.1007/s11242-021-01606-1 (2021).


108) R. Toutouni, S. P. Tan, H. Plancher, and M. Piri,  Effects of temperature and pressure on interfacial tensions of fluid mixtures. II. Propane/n-Pentane and Propane/n-Hexane binaries, Journal of Chemical & Engineering Data, 66(5), 1984-1991,  https://doi.org/10.1021/acs.jced.0c01045  (2021).


107) R. Toutouni, S. P. Tan, H. Plancher, and M. Piri, Effects of temperature and pressure on interfacial tensions of fluid mixtures. I. CO2/n-Pentane binary, Journal of Chemical & Engineering Data, 66(5), 1977-1983, https://doi.org/10.1021/acs.jced.0c01044  (2021).


106) Z. Qin, M. Arshadi, and M. Piri, Carbonated water injection and in situ CO2 exsolution in oil-wet carbonate: A micro-scale experimental investigation, Energy & Fuel, 35(8), 6615-6632, https://doi.org/10.1021/acs.energyfuels.1c00230 (2021).


105) S. Bai, J. Kubelka, and M. Piri, Wettability alteration by smart water multi-ion exchange in carbonates: A molecular dynamics simulation study, Journal of Molecular Liquids, 332, 115830, https://doi.org/10.1016/j.molliq.2021.115830 (2021).


104) Z. Qin, E. Barsotti, and M. Piri, Sub-nanometer scale investigation of in situ wettability using environmental transmission electron microscopy, Journal of Colloid, and Interface Science, 593, 266-275, https://doi.org/10.1016/j.jcis.2021.02.075 (2021).


103) E. Barsotti and M. Piri, Effect of pore size distribution on capillary condensation in nanoporous media, Langmuir, 37(7), 2276-2288. https://doi.org/10.1021/acs.langmuir.0c02775 (2021).


102) J. Kubelka, S. Bai, and M. Piri, Effects of surfactant charge and molecular structure on wettability alteration of calcite: Insights from molecular dynamics simulations, Journal of Physical Chemistry B, 125(4), 1293-1305, https://doi.org/10.1021/acs.jpcb.0c10361 (2021).


101) E. Barsotti, Z. Qin, and M. Piri, In situ investigation of fluid-rock interactions at Angstrom resolution, Journal of Geophysical Research - Solid Earth, 126(2), e2020JB021043, doi.org/10.1029/2020JB021043 (2021).


100) B. Zhang, A. I. A.  Mohammed, L. Goual, and M. Piri, Pore-scale experimental investigation of oil recovery enhancement in oil-wet carbonates using carbonaceous nanofluids, Scientific Reports, 10, 17539, doi.org/10.1038/s41598-020-74450-w (2020).


99) Y. Gong,  and M. Piri, Pore-to-core upscaling of solute transport under steady-state two-phase flow conditions using dynamic pore network modeling approach, Transport in Porous Media, 135, 181-218, DOI: https://doi.org/10.1007/s11242-020-01475-0  (2020).


98) G. Schafer, R. di Chiara Roupert, A. H. Alizadeh, and M. Piri, On the prediction of three-phase relative permeabilities using two-phase constitutive relationships, Advances in Water Resources, 145, 103731, https://doi.org/10.1016/j.advwatres.2020.103731 (2020).


97) A. I. A. Mohamed, M. Khishvand, and M. Piri, A pore-scale experimental investigation of process-dependent capillary desaturation, Advances in Water Resources,        144, 103702, https://doi.org/10.1016/j.advwatres.2020.103702 (2020).


96) T. Qin, L. Goual, M. Piri, Z. Hu, and D. Wen, Nanoparticle-stabilized microemulsions for enhanced oil recovery from heterogeneous rocks, Fuel, 274, 117830, https://doi.org/10.1016/j.fuel.2020.117830 (2020).


95) W. Kuang, S. Saraji, and M. Piri, Nanofluid-Induced Wettability Gradient and Imbibition Enhancement in Natural Porous Media: A Pore-scale Experimental Investigation, Transport in Porous Media, 134, 593-619, https://doi.org/10.1007/s11242-020-01459-0  (2020).


94) S. Bai, J. Kubelka, and M. Piri, Relationship between molecular charge distribution and wettability reversal efficiency of cationic surfactants on calcite surfaces, Journal of Molecular Liquids, 318, 114009, https://doi.org/10.1016/j.molliq.2020.114009 (2020).


93) S. Fagbemi, P. Tahmasebi, and M. Piri, Elastocapillarity modeling of multiphase flow-induced solid deformation using volume of fluid method, Journal of Computational Physics, 421, 109641, https://doi.org/10.1016/j.jcp.2020.109641 (2020).


92) S. P. Tan, E. Barsotti, and M. Piri, Criticality of Confined Fluids Based on the Tensile Strength of Liquids, Industrial & Engineering Chemistry Research, 59(22), 10673-10688, https://doi.org/10.1021/acs.iecr.0c01848 (2020).


91) Y. Xie, M. Khishvand, and M. Piri, Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and

Pressure Conditions, Langmuir, 36(22), 6079-6088, https://doi.org/10.1021/acs.langmuir.0c00367 (2020).


90) K. Osei-Bonsu, S. Khorsandi, and M. Piri, Quantitative analysis of phase topology evolution during three-phase displacements in porous media, Lab on a Chip20, 2495-2509, https://doi.org/10.1039/D0LC00232A (2020).


89) Y. Xie, M. Khishvand, and M. Piri, Impact of connate brine chemistry on in situ wettability and oil recovery: Pore-scale experimental investigation, Energy & Fuel, 34(4), 4031-4045, https://doi.org/10.1021/acs.energyfuels.9b03787 (2020).


88) S. Bai, J. Kubelka, and M. Piri, Atomistic molecular dynamics simulations of surfactant-induced wettability alteration in crevices of calcite nanopores, Energy & Fuel, 34(3), 3135-3143, https://doi.org/10.1021/acs.energyfuels.9b04528 (2020).


87) S. Bai, J. Kubelka, and M. Piri, A positively charged calcite surface model for molecular dynamics studies of wettability alteration, Journal of Colloid, and Interface Science, 569, 128-139, https://doi.org/10.1016/j.jcis.2020.02.037 (2020).


86) M. Arshadi, M. Gesho, T. Qin,  L. Goual, and M. Piri, Impact of mineralogy and wettability on pore-scale displacement of NAPLS in heterogeneous porous media, Journal of Contaminant Hydrology, 230, 103599, https://doi.org/10.1016/j.jconhyd.2020.103599 (2020).


85) T. Qin, L. Goual, M. Piri, Z. Hu, and D. Wen, Pore-scale dynamics of nanofluid-enhanced NAPL displacement in carbonate rock, Journal of Contaminant Hydrology, 230, 103598, https://doi.org/10.1016/j.jconhyd.2019.103598 (2020).


84) W. Kuang, S. Saraji, and M. Piri, Pore-scale sweep efficiency enhancement by silica-based nanofluids in oil-wet sandstone, Energy & Fuel, 34(2), 1297-1308,   https://doi.org/10.1021/acs.energyfuels.9b03081 (2020).


83) E. Barsotti, S. P. Tan, M. Piri, and J. Chen, Capillary-condensation hysteresis in naturally-occurring nanoporous media, Fuel, 263, 116441,   https://doi.org/10.1016/j.fuel.2019.116441 (2020).


82) E. Barsotti, S. P. Tan, L. Goual, and M. Piri, Amorphization of carbon nanotubes in water by electron beam radiation, Carbon, 156, 313-319,   https://doi.org/10.1016/j.carbon.2019.09.043 (2020).

 


81) S. Fagbemi, P. Tahmasebi, and M. Piri, Numerical modeling of strongly coupled microscale multiphase flow and solid deformation, International Journal for Numerical and Analytical Methods in Geomechanics, 44(2), 161-182, https://doi.org/10.1002/nag.2999 (2020).


80) T. Qin, L. Goual, and M. Piri, Synergistic effects of surfactant mixtures on the displacement of nonaqueous phase liquids in porous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123885, https://doi.org/10.1016/j.colsurfa.2019.123885  (2019).


79) Z. Qin, M. Arshadi, and M. Piri, Micro-scale experimental investigations of multiphase flow in oil-wet carbonates. II. Tertiary gas injection and WAG, Fuel, 257, 116012, https://doi.org/10.1016/j.fuel.2019.116012 (2019).


78) Z. Qin, M. Arshadi, and M. Piri, Micro-scale experimental investigations of multiphase flow in oil-wet carbonates. I. In-situ wettability and low-salinity waterflooding, Fuel, 257, 116014, https://doi.org/10.1016/j.fuel.2019.116014 (2019).


77) A. Anbari, E. Lowry, and M. Piri, Estimation of capillary pressure in unconventional reservoirs using thermodynamic analysis of pore images, Journal of Geophysical Research - Solid Earth, 124(11), 10893-10915,  https://doi.org/10.1029/2018JB016498 (2019).


76) M. J. Sabti, A. H. Alizadeh, and M. Piri, In-situ investigation of the impact of spreading on matrix-fracture interactions during three-phase flow in fractured porous media, Advances in Water Resources, 131, 103344, https://doi.org/10.1016/j.advwatres.2019.05.017 (2019).


75) S. P. Tan, E. Barsotti, and M. Piri, Application of material balance for the phase transition of fluid mixtures confined in nanopores, Fluid Phase Equilibria, 496, 31-41, https://doi.org/10.1016/j.fluid.2019.05.011 (2019).


74) V. Mirchi, M. J. Sabti, M. Piri, and L. Goual, Microscale investigation of the impact of surfactant structure on the residual trapping in natural porous media, Industrial & Engineering Chemistry Research, 58(22), 9397-9411, https://doi.org/10.1021/acs.iecr.9b00748 (2019).
73) M. Khishvand, I. O. Kohshour, A. H. Alizadeh, M. Piri, and S. Prasad, A multi-scale experimental study of crude oil-brine-rock interactions and wettability alteration during low-salinity waterflooding, Fuel, 250, 117-131, https://doi.org/10.1016/j.fuel.2019.02.019 (2019).
72) S. Fagbemi, P. Tahmasebi, and M. Piri, Pore-scale modeling of multiphase flow through porous media under triaxial stress, Advances in Water Resources, 122, 206-216, https://doi.org/10.1016/j.advwatres.2018.10.018 (2018).
71) M. Arshadi, M. Piri, and M. Sayed, Proppant-packed fractures in shale gas reservoirs: An in-situ investigation of deformation, wettability, and multiphase flow effects, Journal of Natural Gas Science & Engineering, 59, 387-405, https://doi.org/10.1016/j.jngse.2018.09.015 (2018).
70) E. Lowry and M. Piri, Effect of surface chemistry on confined phase behavior in nanoporous media: An experimental and molecular modeling study, Langmuir, 34(32), 9349-9358, https://doi.org/10.1021/acs.langmuir.8b00986  (2018).
69) S. Fagbemi, P. Tahmasebi, and M. Piri, Interaction between fluid and porous media with complex geometries: A direct pore-scale study, Water Resources Research, 54(9), 6336-6356, doi.org/10.1029/2017WR022242 (2018).
68) M. Arshadi, M. Khishvand, A. Aghaei, M. Piri, and G. A. Al-Muntasheri, Pore-scale experimental investigation of two-phase flow through fractured porous media, Water Resources Research, 54(5), 3602-3631, doi.org/10.1029/2018WR022540 (2018).
67) E. Barsotti, S. P. Tan, M. Piri, and Jin-Hong Chen, Phenomenological study of confined criticality: Insights from the capillary condensation of Propane, n-Butane, and n-Pentane in nanopores, Langmuir, 34(15), 4473-4483, https://doi.org/10.1021/acs.langmuir.8b00125 (2018).
66) A. H. Alizadeh, M. Akbarabadi, E. Barsotti, M. Piri, N. Fishman, and N. Nagarajan, Salt precipitation in ultra-tight porous media and its impact on pore connectivity and hydraulic conductivity, Water Resources Research, 54(4), 2768-2780,  https://doi.org/10.1002/2017WR021194 (2018).
65) M. Heshmati and M. Piri, Interfacial boundary conditions and residual trapping: A pore-scale investigation of the effects of wetting phase flow rate and viscosity using micro-particle image velocimetry, Fuel, 224, 560-578, https://doi.org/10.1016/j.fuel.2018.03.010 (2018).
64) W. Kuang, S. Saraji, and M. Piri, A systematic experimental investigation on the synergistic effects of aqueous nanofluids on interfacial properties and their implications for enhanced oil recovery, Fuel, 220, 849-870, https://doi.org/10.1016/j.fuel.2018.01.102 (2018).
63) E. Barsotti, S. Saraji, S. P. Tan, and M. Piri, Capillary condensation of binary and ternary mixtures of n-Pentane-Isopentane-CO2 in nanopores: An experimental study on the effects of composition and equilibrium, Langmuir, 34(5), 1967-1980, https://doi.org/10.1021/acs.langmuir.7b04134 (2018).
62) M. Sedghi and M. Piri, Capillary Condensation and Capillary Pressure of Methane in Carbon Nanopores: Molecular Dynamics Simulations of Nanoconfinement Effects, Fluid Phase Equilibria, 459, 196-207, https://doi.org/10.1016/j.fluid.2017.12.017 (2018).
61) E. Lowry and M. Piri, Effects of chemical and physical heterogeneity on confined phase behavior in nanopores, Microporous & Mesoporous Materials, 263, 53-61, https://doi.org/10.1016/j.micromeso.2017.11.045  (2018).
60) V. Mirchi, S. Saraji, M. Akbarabadi, L. Goual, and M. Piri, A Systematic study on the impact of surfactant chain length on dynamic interfacial properties in porous media: Implications for enhanced oil recovery, Industrial & Engineering Chemistry Research, 56(46), 13677-13695, https://doi.org/10.1021/acs.iecr.7b02623  (2017).
59) T. Qin, G. Javanbakht, L. Goual, M. Piri, and B. Towler, Microemulsion-enhanced displacement of oil in porous media containing carbonate cements, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530, 60-71, https://doi.org/10.1016/j.colsurfa.2017.07.017 (2017).
58) S. P. Tan and M. Piri, Retrograde behavior revisited: implications for confined fluid phase equilibria in nanopores, Physical Chemistry Chemical Physics, 19, 18890-18901, DOI: 10.1039/C7CP02446K (2017).
57) M. Akbarabadi, S. Saraji, M. Piri, D. Georgi, and M. Delshad, Nano-scale experimental investigation of in-situ wettability and spontaneous imbibition in ultra-tight reservoir rocks, Advances in Water Resources, 107, 160-179, https://doi.org/10.1016/j.advwatres.2017.06.004 (2017).
56) M. Khishvand, A. H. Alizadeh, I. Oraki Kohshour, M. Piri, and R. S. Prasad, In-situ characterization of wettability alteration and displacement mechanisms governing recovery enhancement due to low-salinity waterflooding, Water Resources Research, 53(5), 1-17, DOI: 10.1002/2016WR020191 (2017).
55) M. Akbarabadi, M. Borges, A. Jan, F. Pereira, and M. Piri, On the validation of a compositional model for the simulation of CO2 injection into saline aquifers, Transport in Porous Media, 119, 25-56, DOI: 10.1007/s11242-017-0872-6 (2017).
54) M. Arshadi, A. Zolfaghari, M. Piri, G. A. Al-Muntasheri, and M. Sayed, The effect of deformation on two-phase flow through proppant-packed fractured shale samples: A micro-scale experimental investigation, Advances in Water Resources, 105, 108-131, https://doi.org/10.1016/j.advwatres.2017.04.022  (2017).
53) S. P. Tan and M. Piri, Heat of capillary condensation in nanopores: New insights from equation of state, Physical Chemistry Chemical Physics, 19, 5540-5549, DOI: 10.1039/c6cp07814a (2017).
52) A. Zolfaghari and M. Piri, Pore-scale network modeling of three-phase flow based on thermodynamically consistent threshold capillary pressures. II. Results, Transport in Porous Media, 116(3), 1139 -1165, DOI: 10.1007/s11242-016-0815-7 (2017).

51) A. Zolfaghari and M. Piri, Pore-scale network modeling of three-phase flow based on thermodynamically consistent threshold capillary pressures. I. Cusp formation and collapse, Transport in Porous Media, 116(3), 1093-1137, DOI: 10.1007/s11242-016-0814-8 (2017).


50) M. Khishvand, A. H. Alizadeh, and M. Piri, In-situ characterization of wettability and pore-scale displacements during two- and three-phase flow in natural porous media, Advances in Water Resources, 97, 279-298, https://doi.org/10.1016/j.advwatres.2016.10.009 (2016).


49) M. Khishvand, M. Akbarabadi, and M. Piri, Micro-scale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples, Advances in Water Resources, 94, 379-399, https://doi.org/10.1016/j.advwatres.2016.05.012 (2016).


48) M. Sedghi, M. Piri, and L. Goual, Atomistic molecular dynamics simulations of crude oil/brine displacement in calcite mesopores, Langmuir, 32(14), 3375-3384,   https://doi.org/10.1021/acs.langmuir.5b04713 (2016).


47) E. Barsotti, S. P. Tan, S. Saraji, M. Piri, and J-H. Chen, A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs, Fuel, 184, 344-361, https://doi.org/10.1016/j.fuel.2016.06.123 (2016).


46) P. Tahmasebi, F. Javadpour, M. Sahimi, and M. Piri, Multiscale study for stochastic characterization of shale samples, Advances in Water Resources, 89, 91-103, https://doi.org/10.1016/j.advwatres.2016.01.008 (2016).


45) W. R. W. Welch and M. Piri, Pore diameter effects on phase behavior of a gas condensate in graphitic one-and two-dimensional nanopores, Journal of Molecular Modeling, 22, 1-9, DOI: 10.1007/s00894-015-2894-8 (2016).


44) S. Li, M. Akbarabadi, Y. Zhang, and M. Piri, An integrated site characterization-to-optimization study for commercial-scale carbon dioxide storage, International Journal of Greenhouse Gas Control, 44, 74-87, https://doi.org/10.1016/j.ijggc.2015.10.003 (2016).


43) M. Akbarabadi, M. Borges, A. Jan, F. Pereira, and M. Piri, A Bayesian framework for the validation of models for subsurface flows: Synthetic experiments, Computational Geosciences, 19(6), 1231-1250, DOI: 10.1007/s10596-015-9538-z (2015).


42) S. P. Tan and M. Piri, Equation-of-state modeling of associating-fluids phase equilibria in nanopores, Fluid Phase Equilibria, 405, 157-166,   https://doi.org/10.1016/j.fluid.2015.07.044 (2015).


41) W. R. W.  Welch and M. Piri, Molecular dynamics simulations of retrograde condensation in narrow oil-wet nanopores, Journal of Physical Chemistry C, 119(18), 10040-10047, DOI: 10.1021/jp511125e (2015).


40) S. Saraji and M. Piri, The representative sample size in shale oil rocks and nano-scale characterization of transport properties, International Journal of Coal Geology, 146, 42-54, https://doi.org/10.1016/j.coal.2015.04.005 (2015).


39) S. P. Tan and M. Piri, Equation-of-state modeling of confined-fluid phase equilibria in nanopores, Fluid Phase Equilibria, 393, 48-63,   https://doi.org/10.1016/j.fluid.2015.02.028 (2015).


38) V. Mirchi, S. Saraji, L. Goual, and M. Piri, Dynamic interfacial tension and wettability of shale in the presence of surfactants at reservoir conditions, Fuel, 148, 127-138, DOI: 10.1016/j.fuel.2015.01.077 (2015).


37) X. Li, M. Akbarabadi, Z. T. Karpyn, M. Piri, and E. Bazilevskaya, Experimental investigation of carbon dioxide trapping due to capillary retention in saline aquifers, Geofluids, 15(4), 563-576, DOI: 10.1111/gfl.12127 (2015).


36) A. Aghaei and M. Piri, Direct pore-to-core up-scaling of displacement processes: Dynamic pore network modeling and experimentation, Journal of Hydrology, 522, 488-509, https://doi.org/10.1016/j.jhydrol.2015.01.004 (2015).


35) M. Akbarabadi and M. Piri, Co-sequestration of SO2 with supercritical CO2 in carbonates: An experimental study of capillary trapping, relative permeability, and capillary pressure, Advances in Water Resources, 77, 44-56 https://doi.org/10.1016/j.advwatres.2014.08.011 (2015).


34) M. Sedghi, M. Piri, and L. Goual, Molecular dynamics of wetting layer formation and forced water invasion in angular nanopores with mixed wettability, Journal of Chemical Physics, 141(19), 194703, DOI: 10.1063/1.4901752  (2014).


33) M. Heshmati and M. Piri, Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections, Langmuir, 30(47), 14151-14162, https://doi.org/10.1021/la501724y (2014).


32) A. Rahunanthan, F. Furtado, D. Marchesin, and M. Piri, Hysteretic enhancement of carbon dioxide trapping in deep aquifers, Computational Geosciences, 18, 899-912, DOI: 10.1007/s10596-014-9433-z (2014).


31) A. H. Alizadeh, M. Khishvand, M. A. Ioannidis, and M. Piri, Multi-scale experimental study of carbonated water injection: An effective process for mobilization and recovery of trapped oil, Fuel, 132, 219-235, https://doi.org/10.1016/j.fuel.2014.04.080 (2014).


30) A. H. Alizadeh and M. Piri, Three-phase flow in porous media: a review of experimental studies on relative permeability, Reviews of Geophysics, 52(3), 468-521, DOI: 10.1002/2013RG000433  (2014).


29) S. Saraji, M. Piri, and L. Goual, The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO2/brine/quartz systems, International Journal of Greenhouse Gas Control, 28, 147-155, https://doi.org/10.1016/j.ijggc.2014.06.024 (2014).


28) A. H. Alizadeh and M. Piri, The effect of saturation history on three-phase relative permeability: an experimental study, Water Resources Research, 50(2), 1636-1664, DOI: 10.1002/2013WR014914 (2014).


27) S. Ovaysi and M. Piri, Pore-space alteration induced by brine acidification in subsurface geologic formations, Water Resources Research, 50(1), 440-452, DOI: 10.1002/2013WR014289 (2014).


26) S. P. Tan and M. Piri, Modeling the solubility of nitrogen dioxide in water using perturbed-chain statistical associating fluid theory, Industrial & Engineering Chemistry Research, 52(45), 16032-16043 https://doi.org/10.1021/ie402417p (2013).


25) S. P. Tan, Y. Yao, and M. Piri, Modeling the solubility of SO2 + CO2 mixtures in brine at elevated pressures and temperatures, Industrial & Engineering Chemistry Research, 52(31), 10864-10872, DOI: 10.1021/ie4017557 (2013).


24) S. Saraji, L. Goual, and M. Piri, Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, 260-267, https://doi.org/10.1016/j.colsurfa.2013.05.070 (2013).


23) S. Saraji, L. Goual, M. Piri, and H. Plancher, Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions, Langmuir, 29(23), 6856-6866, DOI: 10.1021/la3050863 (2013).


22) S. Ovaysi and M. Piri, Pore-scale dissolution of CO2 + SO2 in deep saline aquifers, International Journal of Greenhouse Gas Control, 15, 119-133,   https://doi.org/10.1016/j.ijggc.2013.02.009 (2013).


21) M. Akbarabadi and M. Piri, Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions, Advances in Water Resources, 52, 190-206, https://doi.org/10.1016/j.advwatres.2012.06.014 (2013).


20) S. Ovaysi and M. Piri, Multi-GPU acceleration of direct pore-scale modeling of fluid flow in natural porous media, Computer Physics Communications, 183(9), 1890-1898, https://doi.org/10.1016/j.cpc.2012.04.007 (2012).


19) C. J. Landry, Z. T. Karpyn, and M. Piri, Pore-scale analysis of trapped immiscible fluid structures and fluid interfacial areas in oil-wet and water-wet bead packs, Geofluids, 11(2), 209-227,  https://doi.org/10.1111/j.1468-8123.2011.00333.x (2011).


18) S. Ovaysi and M. Piri, Pore-scale modeling of dispersion in disordered porous media, Journal of Contaminant Hydrology, 124 (1-4), 68-81, https://doi.org/10.1016/j.jconhyd.2011.02.004 (2011).


17) S. Saraji, L. Goual, and M. Piri, Adsorption of Asphaltenes in porous media under flow conditions, Energy & Fuels, 24(11), 6009-6017, DOI: 10.1021/ef100881k (2010).


16) S. Ovaysi and M. Piri, Direct pore-level modeling of incompressible fluid flow in porous media, Journal of Computational Physics, 229(19), 7456-7476, https://doi.org/10.1016/j.jcp.2010.06.028 (2010).


15) C. Douglas, F. Furtado, V. Ginting, M. Mendes, F. Pereira, and M. Piri, On the development of a high-performance tool for the simulation of CO2 injection into deep saline aquifers, Rocky Mountain Geology, 45(2), 151-161, https://doi.org/10.2113/gsrocky.45.2.151 (2010).


14) Z. T. Karpyn, M. Piri, and G. Singh, Experimental investigation of trapped oil clusters in a water-wet bead pack using x-ray microtomography, Water Resources Research, 46(4), W04510, DOI: 10.1029/2008WR007539  (2010).


13) B. Raeesi and M. Piri, The effects of wettability and trapping on relationships between interfacial area, capillary pressure, and saturation in porous media: A pore-scale network modeling approach, Journal of Hydrology, 376(3-4), 337-352, DOI: 10.1016/j.jhydrol.2009.07.060 (2009).


12) V. S. Suicmez, M. Piri, and M. J. Blunt, Effects of wettability and pore-level displacement on hydrocarbon trapping, Advances in Water Resources, 31(3), 503-512, https://doi.org/10.1016/j.advwatres.2007.11.003 (2008).


11) M. I. J. Van Dijke, M. Piri, Introduction to special section on modeling of pore-scale processes, Water Resources Research, 43(12), W12S01, DOI: 10.1029/2007WR006332 (2007).


10) M. I. J. Van Dijke, M. Piri, J. O. Helland, K. S. Sorbie, M. J. Blunt, and S. M. Skjæveland, Criteria for three-fluid configurations including layers in a pore with nonuniform wettability, Water Resources Research, 43(12), W12S05, DOI: 10.1029/2006WR005761 (2007).


9) M. Piri and Z. T. Karpyn, Prediction of fluid occupancy in fractures using network modeling and x-ray Microtomography. II: Results, Physical Review E, 76, 016316, DOI: 10.1103/PhysRevE.76.016316 (2007).


8) Z. T. Karpyn and M. Piri, Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. I: Data conditioning and model description, Physical Review E, 76, 016315, DOI: 10.1103/PhysRevE.76.016315   (2007).


7) V. S. Suicmez, M. Piri, and M. J. Blunt, Pore-scale simulation of water alternate gas injection, Transport in Porous Media, 66(3), 259-286, DOI: 10.1007/s11242-006-0017-9 (2007).


6) R. C. Fuller, J. H. Prevost, and M. Piri, Three-phase equilibrium and partitioning calculations for CO2 sequestration in saline aquifers, Journal of Geophysical Research - Solid Earth, 111(B6), B06207, DOI: 10.1029/2005JB003618 (2006).


5) M. Piri and M. J. Blunt, Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Physical Review E, 71, 026301, DOI: 10.1103/PhysRevE.71.026301 (2005).


4) M. Piri and M. J. Blunt, Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results. Physical Review E, 71, 026302, DOI: 10.1103/PhysRevE.71.026302 (2005).


3) P. H. Valvatne, M. Piri, X. Lopez, and M. J. Blunt, Predictive pore-scale modeling of single and multiphase flow, Transport in Porous Media, 58, 23-41, DOI: 10.1007/s11242-004-5468-2 (2005).


2) M. Piri, and M. J. Blunt, Three-phase threshold capillary pressures in noncircular capillary tubes with different wettabilities including contact angle hysteresis, Physical Review E, 70, 061603, DOI: 10.1103/PhysRevE.70.061603 (2004).


1) M. J. Blunt, M. D. Jackson, M. Piri, and P. H. Valvatne, Detailed physics, predictive capabilities, and macroscopic consequences for pore-network models of multiphase flow, Advances in Water Resources, 25 (8-12): 1069-1089, https://doi.org/10.1016/S0309-1708(02)00049-0  (2002).